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Quantum Behavior

Note: This chapter is almost exactly the same as Chapter 37 of Volume I.

1-1 Atomic mechanics

“Quantum mechanics” is the description of the behavior of matter and light
in all its details and, in particular, of the happenings on an atomic scale. Things
on a very small scale behave like nothing that you have any direct experience
about. They do not behave like waves, they do not behave like particles, they do
not behave like clouds, or billiard balls, or weights on springs, or like anything
that you have ever seen.

Newton thought that light was made up of particles, but then it was discovered
that it behaves like a wave. Later, however (in the beginning of the twentieth
century), it was found that light did indeed sometimes behave like a particle.
Historically, the electron, for example, was thought to behave like a particle, and
then it was found that in many respects it behaved like a wave. So it really
behaves like neither. Now we have given up. We say: “It is like neither.”

There is one lucky break, however—electrons behave just like light. The
quantum behavior of atomic objects (electrons, protons, neutrons, photons, and
so on) is the same for all, they are all “particle waves,” or whatever you want to
call them. So what we learn about the properties of electrons (which we shall use
for our examples) will apply also to all “particles,” including photons of light.

The gradual accumulation of information about atomic and small-scale be-
havior during the first quarter of the 20th century, which gave some indications
about how small things do behave, produced an increasing confusion which was
finally resolved in 1926 and 1927 by Schrödinger, Heisenberg, and Born. They
finally obtained a consistent description of the behavior of matter on a small
scale. We take up the main features of that description in this chapter.
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Because atomic behavior is so unlike ordinary experience, it is very di�cult
to get used to, and it appears peculiar and mysterious to everyone—both to the
novice and to the experienced physicist. Even the experts do not understand it
the way they would like to, and it is perfectly reasonable that they should not,
because all of direct, human experience and of human intuition applies to large
objects. We know how large objects will act, but things on a small scale just
do not act that way. So we have to learn about them in a sort of abstract or
imaginative fashion and not by connection with our direct experience.

In this chapter we shall tackle immediately the basic element of the mysterious
behavior in its most strange form. We choose to examine a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it contains the only mystery.
We cannot make the mystery go away by “explaining” how it works. We will just
tell you how it works. In telling you how it works we will have told you about
the basic peculiarities of all quantum mechanics.

1-2 An experiment with bullets

To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with the more
familiar behavior of particles like bullets, and with the behavior of waves like
water waves. We consider first the behavior of bullets in the experimental setup
shown diagrammatically in Fig. 1-1. We have a machine gun that shoots a stream

GUN

(a)

WALL

1

2

x

MOVABLE
DETECTOR

BACKSTOP

(b)

P1

P2

(c)

P12

P12 = P1 + P2

Fig. 1-1. Interference experiment with bullets.

1-2



of bullets. It is not a very good gun, in that it sprays the bullets (randomly) over a
fairly large angular spread, as indicated in the figure. In front of the gun we have
a wall (made of armor plate) that has in it two holes just about big enough to let
a bullet through. Beyond the wall is a backstop (say a thick wall of wood) which
will “absorb” the bullets when they hit it. In front of the wall we have an object
which we shall call a “detector” of bullets. It might be a box containing sand. Any
bullet that enters the detector will be stopped and accumulated. When we wish,
we can empty the box and count the number of bullets that have been caught.
The detector can be moved back and forth (in what we will call the x-direction).
With this apparatus, we can find out experimentally the answer to the question:
“What is the probability that a bullet which passes through the holes in the wall
will arrive at the backstop at the distance x from the center?” First, you should
realize that we should talk about probability, because we cannot say definitely
where any particular bullet will go. A bullet which happens to hit one of the
holes may bounce o� the edges of the hole, and may end up anywhere at all. By
“probability” we mean the chance that the bullet will arrive at the detector, which
we can measure by counting the number which arrive at the detector in a certain
time and then taking the ratio of this number to the total number that hit the
backstop during that time. Or, if we assume that the gun always shoots at the
same rate during the measurements, the probability we want is just proportional
to the number that reach the detector in some standard time interval.

For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are indestructible bullets—
they cannot break in half. In our experiment we find that bullets always arrive in
lumps, and when we find something in the detector, it is always one whole bullet.
If the rate at which the machine gun fires is made very low, we find that at any
given moment either nothing arrives, or one and only one—exactly one—bullet
arrives at the backstop. Also, the size of the lump certainly does not depend on
the rate of firing of the gun. We shall say: “Bullets always arrive in identical
lumps.” What we measure with our detector is the probability of arrival of a
lump. And we measure the probability as a function of x. The result of such
measurements with this apparatus (we have not yet done the experiment, so we
are really imagining the result) are plotted in the graph drawn in part (c) of
Fig. 1-1. In the graph we plot the probability to the right and x vertically, so
that the x-scale fits the diagram of the apparatus. We call the probability P12
because the bullets may have come either through hole 1 or through hole 2. You
will not be surprised that P12 is large near the middle of the graph but gets
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small if x is very large. You may wonder, however, why P12 has its maximum
value at x = 0. We can understand this fact if we do our experiment again after
covering up hole 2, and once more while covering up hole 1. When hole 2 is
covered, bullets can pass only through hole 1, and we get the curve marked P1 in
part (b) of the figure. As you would expect, the maximum of P1 occurs at the
value of x which is on a straight line with the gun and hole 1. When hole 1 is
closed, we get the symmetric curve P2 drawn in the figure. P2 is the probability
distribution for bullets that pass through hole 2. Comparing parts (b) and (c) of
Fig. 1-1, we find the important result that

P12 = P1 + P2. (1.1)

The probabilities just add together. The e�ect with both holes open is the sum
of the e�ects with each hole open alone. We shall call this result an observation
of “no interference,” for a reason that you will see later. So much for bullets.
They come in lumps, and their probability of arrival shows no interference.

1-3 An experiment with waves

Now we wish to consider an experiment with water waves. The apparatus
is shown diagrammatically in Fig. 1-2. We have a shallow trough of water. A
small object labeled the “wave source” is jiggled up and down by a motor and
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Fig. 1-2. Interference experiment with water waves.
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makes circular waves. To the right of the source we have again a wall with two
holes, and beyond that is a second wall, which, to keep things simple, is an
“absorber,” so that there is no reflection of the waves that arrive there. This can
be done by building a gradual sand “beach.” In front of the beach we place a
detector which can be moved back and forth in the x-direction, as before. The
detector is now a device which measures the “intensity” of the wave motion. You
can imagine a gadget which measures the height of the wave motion, but whose
scale is calibrated in proportion to the square of the actual height, so that the
reading is proportional to the intensity of the wave. Our detector reads, then, in
proportion to the energy being carried by the wave—or rather, the rate at which
energy is carried to the detector.

With our wave apparatus, the first thing to notice is that the intensity can have
any size. If the source just moves a very small amount, then there is just a little bit
of wave motion at the detector. When there is more motion at the source, there
is more intensity at the detector. The intensity of the wave can have any value
at all. We would not say that there was any “lumpiness” in the wave intensity.

Now let us measure the wave intensity for various values of x (keeping the
wave source operating always in the same way). We get the interesting-looking
curve marked I12 in part (c) of the figure.

We have already worked out how such patterns can come about when we
studied the interference of electric waves in Volume I. In this case we would
observe that the original wave is di�racted at the holes, and new circular waves
spread out from each hole. If we cover one hole at a time and measure the
intensity distribution at the absorber we find the rather simple intensity curves
shown in part (b) of the figure. I1 is the intensity of the wave from hole 1 (which
we find by measuring when hole 2 is blocked o�) and I2 is the intensity of the
wave from hole 2 (seen when hole 1 is blocked).

The intensity I12 observed when both holes are open is certainly not the sum
of I1 and I2. We say that there is “interference” of the two waves. At some places
(where the curve I12 has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large intensity.
We say that the two waves are “interfering constructively” at such places. There
will be such constructive interference wherever the distance from the detector to
one hole is a whole number of wavelengths larger (or shorter) than the distance
from the detector to the other hole.

At those places where the two waves arrive at the detector with a phase
di�erence of fi (where they are “out of phase”) the resulting wave motion at
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the detector will be the di�erence of the two amplitudes. The waves “interfere
destructively,” and we get a low value for the wave intensity. We expect such low
values wherever the distance between hole 1 and the detector is di�erent from the
distance between hole 2 and the detector by an odd number of half-wavelengths.
The low values of I12 in Fig. 1-2 correspond to the places where the two waves
interfere destructively.

You will remember that the quantitative relationship between I1, I2, and I12
can be expressed in the following way: The instantaneous height of the water
wave at the detector for the wave from hole 1 can be written as (the real part
of) h1eiÊt, where the “amplitude” h1 is, in general, a complex number. The
intensity is proportional to the mean squared height or, when we use the complex
numbers, to the absolute value squared |h1|2. Similarly, for hole 2 the height
is h2eiÊt and the intensity is proportional to |h2|2. When both holes are open,
the wave heights add to give the height (h1 + h2)eiÊt and the intensity |h1 + h2|2.
Omitting the constant of proportionality for our present purposes, the proper
relations for interfering waves are

I1 = |h1|2, I2 = |h2|2, I12 = |h1 + h2|2. (1.2)

You will notice that the result is quite di�erent from that obtained with
bullets (Eq. 1.1). If we expand |h1 + h2|2 we see that

|h1 + h2|2 = |h1|2 + |h2|2 + 2|h1||h2| cos ”, (1.3)

where ” is the phase di�erence between h1 and h2. In terms of the intensities,
we could write

I12 = I1 + I2 + 2


I1I2 cos ”. (1.4)

The last term in (1.4) is the “interference term.” So much for water waves. The
intensity can have any value, and it shows interference.

1-4 An experiment with electrons

Now we imagine a similar experiment with electrons. It is shown diagram-
matically in Fig. 1-3. We make an electron gun which consists of a tungsten wire
heated by an electric current and surrounded by a metal box with a hole in it. If
the wire is at a negative voltage with respect to the box, electrons emitted by
the wire will be accelerated toward the walls and some will pass through the hole.
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Fig. 1-3. Interference experiment with electrons.

All the electrons which come out of the gun will have (nearly) the same energy.
In front of the gun is again a wall (just a thin metal plate) with two holes in it.
Beyond the wall is another plate which will serve as a “backstop.” In front of the
backstop we place a movable detector. The detector might be a geiger counter
or, perhaps better, an electron multiplier, which is connected to a loudspeaker.

We should say right away that you should not try to set up this experiment (as
you could have done with the two we have already described). This experiment
has never been done in just this way. The trouble is that the apparatus would
have to be made on an impossibly small scale to show the e�ects we are interested
in. We are doing a “thought experiment,” which we have chosen because it is easy
to think about. We know the results that would be obtained because there are
many experiments that have been done, in which the scale and the proportions
have been chosen to show the e�ects we shall describe.

The first thing we notice with our electron experiment is that we hear sharp
“clicks” from the detector (that is, from the loudspeaker). And all “clicks” are
the same. There are no “half-clicks.”

We would also notice that the “clicks” come very erratically. Something like:
click . . . . . click-click . . . click . . . . . . . . click . . . . click-click . . . . . . click . . . , etc.,
just as you have, no doubt, heard a geiger counter operating. If we count the
clicks which arrive in a su�ciently long time—say for many minutes—and then
count again for another equal period, we find that the two numbers are very
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nearly the same. So we can speak of the average rate at which the clicks are
heard (so-and-so-many clicks per minute on the average).

As we move the detector around, the rate at which the clicks appear is faster
or slower, but the size (loudness) of each click is always the same. If we lower
the temperature of the wire in the gun, the rate of clicking slows down, but still
each click sounds the same. We would notice also that if we put two separate
detectors at the backstop, one or the other would click, but never both at once.
(Except that once in a while, if there were two clicks very close together in time,
our ear might not sense the separation.) We conclude, therefore, that whatever
arrives at the backstop arrives in “lumps.” All the “lumps” are the same size:
only whole “lumps” arrive, and they arrive one at a time at the backstop. We
shall say: “Electrons always arrive in identical lumps.”

Just as for our experiment with bullets, we can now proceed to find exper-
imentally the answer to the question: “What is the relative probability that
an electron ‘lump’ will arrive at the backstop at various distances x from the
center?” As before, we obtain the relative probability by observing the rate of
clicks, holding the operation of the gun constant. The probability that lumps
will arrive at a particular x is proportional to the average rate of clicks at that x.

The result of our experiment is the interesting curve marked P12 in part (c)
of Fig. 1-3. Yes! That is the way electrons go.

1-5 The interference of electron waves

Now let us try to analyze the curve of Fig. 1-3 to see whether we can understand
the behavior of the electrons. The first thing we would say is that since they
come in lumps, each lump, which we may as well call an electron, has come either
through hole 1 or through hole 2. Let us write this in the form of a “Proposition”:

Proposition A: Each electron either goes through hole 1 or it goes through
hole 2.

Assuming Proposition A, all electrons that arrive at the backstop can be
divided into two classes: (1) those that come through hole 1, and (2) those that
come through hole 2. So our observed curve must be the sum of the e�ects of
the electrons which come through hole 1 and the electrons which come through
hole 2. Let us check this idea by experiment. First, we will make a measurement
for those electrons that come through hole 1. We block o� hole 2 and make
our counts of the clicks from the detector. From the clicking rate, we get P1.
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The result of the measurement is shown by the curve marked P1 in part (b) of
Fig. 1-3. The result seems quite reasonable. In a similar way, we measure P2, the
probability distribution for the electrons that come through hole 2. The result of
this measurement is also drawn in the figure.

The result P12 obtained with both holes open is clearly not the sum of P1
and P2, the probabilities for each hole alone. In analogy with our water-wave
experiment, we say: “There is interference.”

For electrons: P12 ”= P1 + P2. (1.5)

How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go either through
hole 1 or hole 2, because if they did, the probabilities should add. Perhaps they
go in a more complicated way. They split in half and . . . ” But no! They cannot,
they always arrive in lumps . . . “Well, perhaps some of them go through 1, and
then they go around through 2, and then around a few more times, or by some
other complicated path . . . then by closing hole 2, we changed the chance that
an electron that started out through hole 1 would finally get to the backstop . . . ”
But notice! There are some points at which very few electrons arrive when both
holes are open, but which receive many electrons if we close one hole, so closing
one hole increased the number from the other. Notice, however, that at the
center of the pattern, P12 is more than twice as large as P1 + P2. It is as though
closing one hole decreased the number of electrons which come through the other
hole. It seems hard to explain both e�ects by proposing that the electrons travel
in complicated paths.

It is all quite mysterious. And the more you look at it the more mysterious
it seems. Many ideas have been concocted to try to explain the curve for P12
in terms of individual electrons going around in complicated ways through the
holes. None of them has succeeded. None of them can get the right curve for P12
in terms of P1 and P2.

Yet, surprisingly enough, the mathematics for relating P1 and P2 to P12 is
extremely simple. For P12 is just like the curve I12 of Fig. 1-2, and that was simple.
What is going on at the backstop can be described by two complex numbers that
we can call „1 and „2 (they are functions of x, of course). The absolute square
of „1 gives the e�ect with only hole 1 open. That is, P1 = |„1|2. The e�ect with
only hole 2 open is given by „2 in the same way. That is, P2 = |„2|2. And the
combined e�ect of the two holes is just P12 = |„1 + „2|2. The mathematics is the
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same as that we had for the water waves! (It is hard to see how one could get
such a simple result from a complicated game of electrons going back and forth
through the plate on some strange trajectory.)

We conclude the following: The electrons arrive in lumps, like particles, and
the probability of arrival of these lumps is distributed like the distribution of
intensity of a wave. It is in this sense that an electron behaves “sometimes like a
particle and sometimes like a wave.”

Incidentally, when we were dealing with classical waves we defined the intensity
as the mean over time of the square of the wave amplitude, and we used complex
numbers as a mathematical trick to simplify the analysis. But in quantum
mechanics it turns out that the amplitudes must be represented by complex
numbers. The real parts alone will not do. That is a technical point, for the
moment, because the formulas look just the same.

Since the probability of arrival through both holes is given so simply, although
it is not equal to (P1 + P2), that is really all there is to say. But there are a
large number of subtleties involved in the fact that nature does work this way.
We would like to illustrate some of these subtleties for you now. First, since the
number that arrives at a particular point is not equal to the number that arrives
through 1 plus the number that arrives through 2, as we would have concluded
from Proposition A, undoubtedly we should conclude that Proposition A is false.
It is not true that the electrons go either through hole 1 or hole 2. But that
conclusion can be tested by another experiment.

1-6 Watching the electrons

We shall now try the following experiment. To our electron apparatus we
add a very strong light source, placed behind the wall and between the two holes,
as shown in Fig. 1-4. We know that electric charges scatter light. So when an
electron passes, however it does pass, on its way to the detector, it will scatter
some light to our eye, and we can see where the electron goes. If, for instance, an
electron were to take the path via hole 2 that is sketched in Fig. 1-4, we should
see a flash of light coming from the vicinity of the place marked A in the figure. If
an electron passes through hole 1, we would expect to see a flash from the vicinity
of the upper hole. If it should happen that we get light from both places at the
same time, because the electron divides in half . . . Let us just do the experiment!

Here is what we see: every time that we hear a “click” from our electron
detector (at the backstop), we also see a flash of light either near hole 1 or near
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Fig. 1-4. A different electron experiment.

hole 2, but never both at once! And we observe the same result no matter where
we put the detector. From this observation we conclude that when we look at
the electrons we find that the electrons go either through one hole or the other.
Experimentally, Proposition A is necessarily true.

What, then, is wrong with our argument against Proposition A? Why isn’t P12
just equal to P1 + P2? Back to experiment! Let us keep track of the electrons
and find out what they are doing. For each position (x-location) of the detector
we will count the electrons that arrive and also keep track of which hole they
went through, by watching for the flashes. We can keep track of things this
way: whenever we hear a “click” we will put a count in Column 1 if we see the
flash near hole 1, and if we see the flash near hole 2, we will record a count
in Column 2. Every electron which arrives is recorded in one of two classes:
those which come through 1 and those which come through 2. From the number
recorded in Column 1 we get the probability P Õ

1 that an electron will arrive at
the detector via hole 1; and from the number recorded in Column 2 we get P Õ

2,
the probability that an electron will arrive at the detector via hole 2. If we now
repeat such a measurement for many values of x, we get the curves for P Õ

1 and P Õ
2

shown in part (b) of Fig. 1-4.
Well, that is not too surprising! We get for P Õ

1 something quite similar to
what we got before for P1 by blocking o� hole 2; and P Õ

2 is similar to what we got
by blocking hole 1. So there is not any complicated business like going through
both holes. When we watch them, the electrons come through just as we would
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expect them to come through. Whether the holes are closed or open, those which
we see come through hole 1 are distributed in the same way whether hole 2 is
open or closed.

But wait! What do we have now for the total probability, the probability
that an electron will arrive at the detector by any route? We already have that
information. We just pretend that we never looked at the light flashes, and we
lump together the detector clicks which we have separated into the two columns.
We must just add the numbers. For the probability that an electron will arrive
at the backstop by passing through either hole, we do find P Õ

12 = P Õ
1 + P Õ

2. That
is, although we succeeded in watching which hole our electrons come through,
we no longer get the old interference curve P12, but a new one, P Õ

12, showing no
interference! If we turn out the light P12 is restored.

We must conclude that when we look at the electrons the distribution of them
on the screen is di�erent than when we do not look. Perhaps it is turning on
our light source that disturbs things? It must be that the electrons are very
delicate, and the light, when it scatters o� the electrons, gives them a jolt that
changes their motion. We know that the electric field of the light acting on a
charge will exert a force on it. So perhaps we should expect the motion to be
changed. Anyway, the light exerts a big influence on the electrons. By trying to
“watch” the electrons we have changed their motions. That is, the jolt given to
the electron when the photon is scattered by it is such as to change the electron’s
motion enough so that if it might have gone to where P12 was at a maximum it
will instead land where P12 was a minimum; that is why we no longer see the
wavy interference e�ects.

You may be thinking: “Don’t use such a bright source! Turn the brightness
down! The light waves will then be weaker and will not disturb the electrons so
much. Surely, by making the light dimmer and dimmer, eventually the wave will
be weak enough that it will have a negligible e�ect.” O.K. Let’s try it. The first
thing we observe is that the flashes of light scattered from the electrons as they
pass by does not get weaker. It is always the same-sized flash. The only thing
that happens as the light is made dimmer is that sometimes we hear a “click”
from the detector but see no flash at all. The electron has gone by without being
“seen.” What we are observing is that light also acts like electrons, we knew that
it was “wavy,” but now we find that it is also “lumpy.” It always arrives—or is
scattered—in lumps that we call “photons.” As we turn down the intensity of
the light source we do not change the size of the photons, only the rate at which
they are emitted. That explains why, when our source is dim, some electrons get
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by without being seen. There did not happen to be a photon around at the time
the electron went through.

This is all a little discouraging. If it is true that whenever we “see” the electron
we see the same-sized flash, then those electrons we see are always the disturbed
ones. Let us try the experiment with a dim light anyway. Now whenever we
hear a click in the detector we will keep a count in three columns: in Column (1)
those electrons seen by hole 1, in Column (2) those electrons seen by hole 2,
and in Column (3) those electrons not seen at all. When we work up our data
(computing the probabilities) we find these results: Those “seen by hole 1” have
a distribution like P Õ

1; those “seen by hole 2” have a distribution like P Õ
2 (so that

those “seen by either hole 1 or 2” have a distribution like P Õ
12); and those “not

seen at all” have a “wavy” distribution just like P12 of Fig. 1-3! If the electrons
are not seen, we have interference!

That is understandable. When we do not see the electron, no photon disturbs
it, and when we do see it, a photon has disturbed it. There is always the same
amount of disturbance because the light photons all produce the same-sized
e�ects and the e�ect of the photons being scattered is enough to smear out any
interference e�ect.

Is there not some way we can see the electrons without disturbing them?
We learned in an earlier chapter that the momentum carried by a “photon” is
inversely proportional to its wavelength (p = h/⁄). Certainly the jolt given
to the electron when the photon is scattered toward our eye depends on the
momentum that photon carries. Aha! If we want to disturb the electrons only
slightly we should not have lowered the intensity of the light, we should have
lowered its frequency (the same as increasing its wavelength). Let us use light of
a redder color. We could even use infrared light, or radiowaves (like radar), and
“see” where the electron went with the help of some equipment that can “see”
light of these longer wavelengths. If we use “gentler” light perhaps we can avoid
disturbing the electrons so much.

Let us try the experiment with longer waves. We shall keep repeating our
experiment, each time with light of a longer wavelength. At first, nothing seems to
change. The results are the same. Then a terrible thing happens. You remember
that when we discussed the microscope we pointed out that, due to the wave
nature of the light, there is a limitation on how close two spots can be and still
be seen as two separate spots. This distance is of the order of the wavelength of
light. So now, when we make the wavelength longer than the distance between
our holes, we see a big fuzzy flash when the light is scattered by the electrons.
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We can no longer tell which hole the electron went through! We just know it went
somewhere! And it is just with light of this color that we find that the jolts given
to the electron are small enough so that P Õ

12 begins to look like P12—that we
begin to get some interference e�ect. And it is only for wavelengths much longer
than the separation of the two holes (when we have no chance at all of telling
where the electron went) that the disturbance due to the light gets su�ciently
small that we again get the curve P12 shown in Fig. 1-3.

In our experiment we find that it is impossible to arrange the light in such
a way that one can tell which hole the electron went through, and at the same
time not disturb the pattern. It was suggested by Heisenberg that the then
new laws of nature could only be consistent if there were some basic limitation
on our experimental capabilities not previously recognized. He proposed, as a
general principle, his uncertainty principle, which we can state in terms of our
experiment as follows: “It is impossible to design an apparatus to determine
which hole the electron passes through, that will not at the same time disturb the
electrons enough to destroy the interference pattern.” If an apparatus is capable
of determining which hole the electron goes through, it cannot be so delicate
that it does not disturb the pattern in an essential way. No one has ever found
(or even thought of) a way around the uncertainty principle. So we must assume
that it describes a basic characteristic of nature.

The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter, depends on the correctness of the uncertainty
principle. Since quantum mechanics is such a successful theory, our belief in
the uncertainty principle is reinforced. But if a way to “beat” the uncertainty
principle were ever discovered, quantum mechanics would give inconsistent results
and would have to be discarded as a valid theory of nature.

“Well,” you say, “what about Proposition A? Is it true, or is it not true,
that the electron either goes through hole 1 or it goes through hole 2?” The only
answer that can be given is that we have found from experiment that there is
a certain special way that we have to think in order that we do not get into
inconsistencies. What we must say (to avoid making wrong predictions) is the
following. If one looks at the holes or, more accurately, if one has a piece of
apparatus which is capable of determining whether the electrons go through
hole 1 or hole 2, then one can say that it goes either through hole 1 or hole 2. But,
when one does not try to tell which way the electron goes, when there is nothing
in the experiment to disturb the electrons, then one may not say that an electron
goes either through hole 1 or hole 2. If one does say that, and starts to make any
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deductions from the statement, he will make errors in the analysis. This is the
logical tightrope on which we must walk if we wish to describe nature successfully.

If the motion of all matter—as well as electrons—must be described in terms
of waves, what about the bullets in our first experiment? Why didn’t we see an
interference pattern there? It turns out that for the bullets the wavelengths were
so tiny that the interference patterns became very fine. So fine, in fact, that with
any detector of finite size one could not distinguish the separate maxima and
minima. What we saw was only a kind of average, which is the classical curve.
In Fig. 1-5 we have tried to indicate schematically what happens with large-scale
objects. Part (a) of the figure shows the probability distribution one might
predict for bullets, using quantum mechanics. The rapid wiggles are supposed to
represent the interference pattern one gets for waves of very short wavelength.
Any physical detector, however, straddles several wiggles of the probability curve,
so that the measurements show the smooth curve drawn in part (b) of the figure.

(a)

P

12

(b)

P

12

(smoothed)

x

Fig. 1-5. Interference pattern with bullets: (a) actual (schematic),
(b) observed.

1-7 First principles of quantum mechanics

We will now write a summary of the main conclusions of our experiments. We
will, however, put the results in a form which makes them true for a general class
of such experiments. We can write our summary more simply if we first define
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an “ideal experiment” as one in which there are no uncertain external influences,
i.e., no jiggling or other things going on that we cannot take into account. We
would be quite precise if we said: “An ideal experiment is one in which all of the
initial and final conditions of the experiment are completely specified.” What we
will call “an event” is, in general, just a specific set of initial and final conditions.
(For example: “an electron leaves the gun, arrives at the detector, and nothing
else happens.”) Now for our summary.

Summary

(1) The probability of an event in an ideal experiment is given by the square
of the absolute value of a complex number „ which is called the probability
amplitude:

P = probability,

„ = probability amplitude,

P = |„|2.

(1.6)

(2) When an event can occur in several alternative ways, the probability
amplitude for the event is the sum of the probability amplitudes for each
way considered separately. There is interference:

„ = „1 + „2,

P = |„1 + „2|2.
(1.7)

(3) If an experiment is performed which is capable of determining whether one
or another alternative is actually taken, the probability of the event is the
sum of the probabilities for each alternative. The interference is lost:

P = P1 + P2. (1.8)

One might still like to ask: “How does it work? What is the machinery
behind the law?” No one has found any machinery behind the law. No one can
“explain” any more than we have just “explained.” No one will give you any deeper
representation of the situation. We have no ideas about a more basic mechanism
from which these results can be deduced.

We would like to emphasize a very important di�erence between classical and
quantum mechanics. We have been talking about the probability that an electron
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will arrive in a given circumstance. We have implied that in our experimental
arrangement (or even in the best possible one) it would be impossible to predict
exactly what would happen. We can only predict the odds! This would mean, if
it were true, that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics has given up. We do
not know how to predict what would happen in a given circumstance, and we
believe now that it is impossible—that the only thing that can be predicted is the
probability of di�erent events. It must be recognized that this is a retrenchment
in our earlier ideal of understanding nature. It may be a backward step, but no
one has seen a way to avoid it.

We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron has some
kind of internal works—some inner variables—that we do not yet know about.
Perhaps that is why we cannot predict what will happen. If we could look more
closely at the electron, we could be able to tell where it would end up.” So far as
we know, that is impossible. We would still be in di�culty. Suppose we were to
assume that inside the electron there is some kind of machinery that determines
where it is going to end up. That machine must also determine which hole it is
going to go through on its way. But we must not forget that what is inside the
electron should not be dependent on what we do, and in particular upon whether
we open or close one of the holes. So if an electron, before it starts, has already
made up its mind (a) which hole it is going to use, and (b) where it is going to
land, we should find P1 for those electrons that have chosen hole 1, P2 for those
that have chosen hole 2, and necessarily the sum P1 + P2 for those that arrive
through the two holes. There seems to be no way around this. But we have
verified experimentally that that is not the case. And no one has figured a way
out of this puzzle. So at the present time we must limit ourselves to computing
probabilities. We say “at the present time,” but we suspect very strongly that
it is something that will be with us forever—that it is impossible to beat that
puzzle—that this is the way nature really is.

1-8 The uncertainty principle

This is the way Heisenberg stated the uncertainty principle originally: If you
make the measurement on any object, and you can determine the x-component
of its momentum with an uncertainty �p, you cannot, at the same time, know its
x-position more accurately than �x Ø ~/2�p, where ~ is a definite fixed number
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given by nature. It is called the “reduced Planck constant,” and is approximately
1.05 ◊ 10≠34 joule-seconds. The uncertainties in the position and momentum of
a particle at any instant must have their product greater than half the reduced
Planck constant. This is a special case of the uncertainty principle that was
stated above more generally. The more general statement was that one cannot
design equipment in any way to determine which of two alternatives is taken,
without, at the same time, destroying the pattern of interference.

ELECTRON
GUN

MOTION FREE

WALL

ROLLERS

ROLLERS

1

2

DETECTOR

p

a

p

b

�p
x

p

a

p

b

�p
x

BACKSTOP

Fig. 1-6. An experiment in which the recoil of the wall is measured.

Let us show for one particular case that the kind of relation given by Heisenberg
must be true in order to keep from getting into trouble. We imagine a modification
of the experiment of Fig. 1-3, in which the wall with the holes consists of a plate
mounted on rollers so that it can move freely up and down (in the x-direction),
as shown in Fig. 1-6. By watching the motion of the plate carefully we can
try to tell which hole an electron goes through. Imagine what happens when
the detector is placed at x = 0. We would expect that an electron which
passes through hole 1 must be deflected downward by the plate to reach the
detector. Since the vertical component of the electron momentum is changed,
the plate must recoil with an equal momentum in the opposite direction. The
plate will get an upward kick. If the electron goes through the lower hole, the
plate should feel a downward kick. It is clear that for every position of the
detector, the momentum received by the plate will have a di�erent value for
a traversal via hole 1 than for a traversal via hole 2. So! Without disturbing
the electrons at all, but just by watching the plate, we can tell which path the
electron used.
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Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the momentum
after the electron goes by, we can figure out how much the plate’s momentum has
changed. But remember, according to the uncertainty principle we cannot at the
same time know the position of the plate with an arbitrary accuracy. But if we do
not know exactly where the plate is, we cannot say precisely where the two holes
are. They will be in a di�erent place for every electron that goes through. This
means that the center of our interference pattern will have a di�erent location for
each electron. The wiggles of the interference pattern will be smeared out. We
shall show quantitatively in the next chapter that if we determine the momentum
of the plate su�ciently accurately to determine from the recoil measurement
which hole was used, then the uncertainty in the x-position of the plate will,
according to the uncertainty principle, be enough to shift the pattern observed at
the detector up and down in the x-direction about the distance from a maximum
to its nearest minimum. Such a random shift is just enough to smear out the
pattern so that no interference is observed.

The uncertainty principle “protects” quantum mechanics. Heisenberg rec-
ognized that if it were possible to measure the momentum and the position
simultaneously with a greater accuracy, the quantum mechanics would collapse.
So he proposed that it must be impossible. Then people sat down and tried to
figure out ways of doing it, and nobody could figure out a way to measure the
position and the momentum of anything—a screen, an electron, a billiard ball,
anything—with any greater accuracy. Quantum mechanics maintains its perilous
but still correct existence.
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2

The Relation of Wave and
Particle Viewpoints

Note: This chapter is almost exactly the same as Chapter 38 of Volume I.

2-1 Probability wave amplitudes

In this chapter we shall discuss the relationship of the wave and particle
viewpoints. We already know, from the last chapter, that neither the wave
viewpoint nor the particle viewpoint is correct. We would always like to present
things accurately, or at least precisely enough that they will not have to be
changed when we learn more—it may be extended, but it will not be changed!
But when we try to talk about the wave picture or the particle picture, both
are approximate, and both will change. Therefore what we learn in this chapter
will not be accurate in a certain sense; we will deal with some half-intuitive
arguments which will be made more precise later. But certain things will be
changed a little bit when we interpret them correctly in quantum mechanics. We
are doing this so that you can have some qualitative feeling for some quantum
phenomena before we get into the mathematical details of quantum mechanics.
Furthermore, all our experiences are with waves and with particles, and so it is
rather handy to use the wave and particle ideas to get some understanding of
what happens in given circumstances before we know the complete mathematics
of the quantum-mechanical amplitudes. We shall try to indicate the weakest
places as we go along, but most of it is very nearly correct—it is just a matter of
interpretation.

First of all, we know that the new way of representing the world in quantum
mechanics—the new framework—is to give an amplitude for every event that can
occur, and if the event involves the reception of one particle, then we can give
the amplitude to find that one particle at di�erent places and at di�erent times.
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The probability of finding the particle is then proportional to the absolute square
of the amplitude. In general, the amplitude to find a particle in di�erent places
at di�erent times varies with position and time.

In some special case it can be that the amplitude varies sinusoidally in space
and time like ei(Êt≠k·r), where r is the vector position from some origin. (Do not
forget that these amplitudes are complex numbers, not real numbers.) Such an
amplitude varies according to a definite frequency Ê and wave number k. Then
it turns out that this corresponds to a classical limiting situation where we would
have believed that we have a particle whose energy E was known and is related
to the frequency by

E = ~Ê, (2.1)

and whose momentum p is also known and is related to the wave number by

p = ~k. (2.2)

(The symbol ~ represents the number h divided by 2fi; ~ = h/2fi.)
This means that the idea of a particle is limited. The idea of a particle—

its location, its momentum, etc.—which we use so much, is in certain ways
unsatisfactory. For instance, if an amplitude to find a particle at di�erent places
is given by ei(Êt≠k·r), whose absolute square is a constant, that would mean that
the probability of finding a particle is the same at all points. That means we do
not know where it is—it can be anywhere—there is a great uncertainty in its
location.

On the other hand, if the position of a particle is more or less well known and
we can predict it fairly accurately, then the probability of finding it in di�erent
places must be confined to a certain region, whose length we call �x. Outside
this region, the probability is zero. Now this probability is the absolute square
of an amplitude, and if the absolute square is zero, the amplitude is also zero,
so that we have a wave train whose length is �x (Fig. 2-1), and the wavelength

�x

Fig. 2-1. A wave packet of length �x .
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(the distance between nodes of the waves in the train) of that wave train is what
corresponds to the particle momentum.

Here we encounter a strange thing about waves; a very simple thing which
has nothing to do with quantum mechanics strictly. It is something that anybody
who works with waves, even if he knows no quantum mechanics, knows: namely,
we cannot define a unique wavelength for a short wave train. Such a wave train
does not have a definite wavelength; there is an indefiniteness in the wave number
that is related to the finite length of the train, and thus there is an indefiniteness
in the momentum.

2-2 Measurement of position and momentum

Let us consider two examples of this idea—to see the reason that there is an
uncertainty in the position and/or the momentum, if quantum mechanics is right.
We have also seen before that if there were not such a thing—if it were possible
to measure the position and the momentum of anything simultaneously—we
would have a paradox; it is fortunate that we do not have such a paradox, and
the fact that such an uncertainty comes naturally from the wave picture shows
that everything is mutually consistent.

Here is one example which shows the relationship between the position and
the momentum in a circumstance that is easy to understand. Suppose we have a
single slit, and particles are coming from very far away with a certain energy—so
that they are all coming essentially horizontally (Fig. 2-2). We are going to
concentrate on the vertical components of momentum. All of these particles have
a certain horizontal momentum p0, say, in a classical sense. So, in the classical
sense, the vertical momentum py, before the particle goes through the hole, is

B

C

�✓

Fig. 2-2. Diffraction of particles passing through a slit.
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definitely known. The particle is moving neither up nor down, because it came
from a source that is far away—and so the vertical momentum is of course zero.
But now let us suppose that it goes through a hole whose width is B. Then
after it has come out through the hole, we know the position vertically—the
y-position—with considerable accuracy—namely ±B.† That is, the uncertainty
in position, �y, is of order B. Now we might also want to say, since we known the
momentum is absolutely horizontal, that �py is zero; but that is wrong. We once
knew the momentum was horizontal, but we do not know it any more. Before the
particles passed through the hole, we did not know their vertical positions. Now
that we have found the vertical position by having the particle come through the
hole, we have lost our information on the vertical momentum! Why? According
to the wave theory, there is a spreading out, or di�raction, of the waves after
they go through the slit, just as for light. Therefore there is a certain probability
that particles coming out of the slit are not coming exactly straight. The pattern
is spread out by the di�raction e�ect, and the angle of spread, which we can
define as the angle of the first minimum, is a measure of the uncertainty in the
final angle.

How does the pattern become spread? To say it is spread means that there
is some chance for the particle to be moving up or down, that is, to have a
component of momentum up or down. We say chance and particle because we
can detect this di�raction pattern with a particle counter, and when the counter
receives the particle, say at C in Fig. 2-2, it receives the entire particle, so that,
in a classical sense, the particle has a vertical momentum, in order to get from
the slit up to C.

To get a rough idea of the spread of the momentum, the vertical momentum py

has a spread which is equal to p0 �◊, where p0 is the horizontal momentum.
And how big is �◊ in the spread-out pattern? We know that the first minimum
occurs at an angle �◊ such that the waves from one edge of the slit have to
travel one wavelength farther than the waves from the other side—we worked
that out before (Chapter 30 of Vol. I). Therefore �◊ is ⁄/B, and so �py in this
experiment is p0⁄/B. Note that if we make B smaller and make a more accurate
measurement of the position of the particle, the di�raction pattern gets wider.
So the narrower we make the slit, the wider the pattern gets, and the more is the
likelihood that we would find that the particle has sidewise momentum. Thus the

† More precisely, the error in our knowledge of y is ±B/2. But we are now only interested
in the general idea, so we won’t worry about factors of 2.
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uncertainty in the vertical momentum is inversely proportional to the uncertainty
of y. In fact, we see that the product of the two is equal to p0⁄. But ⁄ is the
wavelength and p0 is the momentum, and in accordance with quantum mechanics,
the wavelength times the momentum is Planck’s constant h. So we obtain the
rule that the uncertainties in the vertical momentum and in the vertical position
have a product of the order h:

�y �py Ø ~/2. (2.3)

We cannot prepare a system in which we know the vertical position of a particle
and can predict how it will move vertically with greater certainty than given
by (2.3). That is, the uncertainty in the vertical momentum must exceed ~/2�y,
where �y is the uncertainty in our knowledge of the position.

Sometimes people say quantum mechanics is all wrong. When the particle
arrived from the left, its vertical momentum was zero. And now that it has gone
through the slit, its position is known. Both position and momentum seem to be
known with arbitrary accuracy. It is quite true that we can receive a particle,
and on reception determine what its position is and what its momentum would
have had to have been to have gotten there. That is true, but that is not what
the uncertainty relation (2.3) refers to. Equation (2.3) refers to the predictability
of a situation, not remarks about the past. It does no good to say “I knew what
the momentum was before it went through the slit, and now I know the position,”
because now the momentum knowledge is lost. The fact that it went through
the slit no longer permits us to predict the vertical momentum. We are talking
about a predictive theory, not just measurements after the fact. So we must talk
about what we can predict.

Now let us take the thing the other way around. Let us take another example
of the same phenomenon, a little more quantitatively. In the previous example
we measured the momentum by a classical method. Namely, we considered the
direction and the velocity and the angles, etc., so we got the momentum by
classical analysis. But since momentum is related to wave number, there exists
in nature still another way to measure the momentum of a particle—photon or
otherwise—which has no classical analog, because it uses Eq. (2.2). We measure
the wavelengths of the waves. Let us try to measure momentum in this way.

Suppose we have a grating with a large number of lines (Fig. 2-3), and send
a beam of particles at the grating. We have often discussed this problem: if
the particles have a definite momentum, then we get a very sharp pattern in a
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Nm� = L

Fig. 2-3. Determination of momentum by using a diffraction grating.

certain direction, because of the interference. And we have also talked about how
accurately we can determine that momentum, that is to say, what the resolving
power of such a grating is. Rather than derive it again, we refer to Chapter 30 of
Volume I, where we found that the relative uncertainty in the wavelength that
can be measured with a given grating is 1/Nm, where N is the number of lines
on the grating and m is the order of the di�raction pattern. That is,

�⁄/⁄ = 1/Nm. (2.4)

Now formula (2.4) can be rewritten as

�⁄/⁄2 = 1/Nm⁄ = 1/L, (2.5)

where L is the distance shown in Fig. 2-3. This distance is the di�erence between
the total distance that the particle or wave or whatever it is has to travel if
it is reflected from the bottom of the grating, and the distance that it has to
travel if it is reflected from the top of the grating. That is, the waves which form
the di�raction pattern are waves which come from di�erent parts of the grating.
The first ones that arrive come from the bottom end of the grating, from the
beginning of the wave train, and the rest of them come from later parts of the
wave train, coming from di�erent parts of the grating, until the last one finally
arrives, and that involves a point in the wave train a distance L behind the first
point. So in order that we shall have a sharp line in our spectrum corresponding
to a definite momentum, with an uncertainty given by (2.4), we have to have a
wave train of at least length L. If the wave train is too short, we are not using
the entire grating. The waves which form the spectrum are being reflected from
only a very short sector of the grating if the wave train is too short, and the
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grating will not work right—we will find a big angular spread. In order to get a
narrower one, we need to use the whole grating, so that at least at some moment
the whole wave train is scattering simultaneously from all parts of the grating.
Thus the wave train must be of length L in order to have an uncertainty in the
wavelength less than that given by (2.5). Incidentally,

�⁄/⁄2 = �(1/⁄) = �k/2fi. (2.6)
Therefore

�k = 2fi/L, (2.7)

where L is the length of the wave train.
This means that if we have a wave train whose length is less than L, the

uncertainty in the wave number must exceed 2fi/L. Or the uncertainty in a wave
number times the length of the wave train—we will call that for a moment �x—
exceeds 2fi. We call it �x because that is the uncertainty in the location of the
particle. If the wave train exists only in a finite length, then that is where we
could find the particle, within an uncertainty �x. Now this property of waves,
that the length of the wave train times the uncertainty of the wave number
associated with it is at least 2fi, is a property that is known to everyone who
studies them. It has nothing to do with quantum mechanics. It is simply that if
we have a finite train, we cannot count the waves in it very precisely.

Let us try another way to see the reason for that. Suppose that we have a
finite train of length L; then because of the way it has to decrease at the ends,
as in Fig. 2-1, the number of waves in the length L is uncertain by something
like ±1. But the number of waves in L is kL/2fi. Thus k is uncertain, and we
again get the result (2.7), a property merely of waves. The same thing works
whether the waves are in space and k is the number of radians per centimeter
and L is the length of the train, or the waves are in time and Ê is the number of
oscillations per second and T is the “length” in time that the wave train comes
in. That is, if we have a wave train lasting only for a certain finite time T , then
the uncertainty in the frequency is given by

�Ê = 2fi/T. (2.8)

We have tried to emphasize that these are properties of waves alone, and they
are well known, for example, in the theory of sound.

The point is that in quantum mechanics we interpret the wave number as
being a measure of the momentum of a particle, with the rule that p = ~k, so
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that relation (2.7) tells us that �p ¥ h/�x. This, then, is a limitation of the
classical idea of momentum. (Naturally, it has to be limited in some ways if we
are going to represent particles by waves!) It is nice that we have found a rule
that gives us some idea of when there is a failure of classical ideas.

2-3 Crystal diffraction
Next let us consider the reflection of particle waves from a crystal. A crystal

is a thick thing which has a whole lot of similar atoms—we will include some
complications later—in a nice array. The question is how to set the array so that
we get a strong reflected maximum in a given direction for a given beam of, say,
light (x-rays), electrons, neutrons, or anything else. In order to obtain a strong
reflection, the scattering from all of the atoms must be in phase. There cannot
be equal numbers in phase and out of phase, or the waves will cancel out. The
way to arrange things is to find the regions of constant phase, as we have already
explained; they are planes which make equal angles with the initial and final
directions (Fig. 2-4).

If we consider two parallel planes, as in Fig. 2-4, the waves scattered from
the two planes will be in phase, provided the di�erence in distance traveled by a
wave front is an integral number of wavelengths. This di�erence can be seen to
be 2d sin ◊, where d is the perpendicular distance between the planes. Thus the
condition for coherent reflection is

2d sin ◊ = n⁄ (n = 1, 2, . . . ). (2.9)

✓
✓ ✓
d

d sin ✓

d sin ✓

Fig. 2-4. Scattering of waves by crystal planes.
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If, for example, the crystal is such that the atoms happen to lie on planes
obeying condition (2.9) with n = 1, then there will be a strong reflection. If,
on the other hand, there are other atoms of the same nature (equal in density)
halfway between, then the intermediate planes will also scatter equally strongly
and will interfere with the others and produce no e�ect. So d in (2.9) must refer
to adjacent planes; we cannot take a plane five layers farther back and use this
formula!

As a matter of interest, actual crystals are not usually as simple as a single
kind of atom repeated in a certain way. Instead, if we make a two-dimensional
analog, they are much like wallpaper, in which there is some kind of figure
which repeats all over the wallpaper. By “figure” we mean, in the case of atoms,
some arrangement—calcium and a carbon and three oxygens, etc., for calcium
carbonate, and so on—which may involve a relatively large number of atoms.
But whatever it is, the figure is repeated in a pattern. This basic figure is called
a unit cell.

The basic pattern of repetition defines what we call the lattice type; the lattice
type can be immediately determined by looking at the reflections and seeing
what their symmetry is. In other words, where we find any reflections at all
determines the lattice type, but in order to determine what is in each of the
elements of the lattice one must take into account the intensity of the scattering
at the various directions. Which directions scatter depends on the type of lattice,
but how strongly each scatters is determined by what is inside each unit cell, and
in that way the structure of crystals is worked out.

Two photographs of x-ray di�raction patterns are shown in Figs. 2-5 and 2-6;
they illustrate scattering from rock salt and myoglobin, respectively.

Figure 2-5 Figure 2-6
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Incidentally, an interesting thing happens if the spacings of the nearest planes
are less than ⁄/2. In this case (2.9) has no solution for n. Thus if ⁄ is bigger
than twice the distance between adjacent planes, then there is no side di�raction
pattern, and the light—or whatever it is—will go right through the material
without bouncing o� or getting lost. So in the case of light, where ⁄ is much
bigger than the spacing, of course it does go through and there is no pattern of
reflection from the planes of the crystal.

PILE

SHORT-� NEUTRONS

GRAPHITE

SHORT-� NEUTRONS

LONG-�
NEUTRONS

Fig. 2-7. Diffusion of pile neutrons through graphite block.

This fact also has an interesting consequence in the case of piles which make
neutrons (these are obviously particles, for anybody’s money!). If we take these
neutrons and let them into a long block of graphite, the neutrons di�use and
work their way along (Fig. 2-7). They di�use because they are bounced by the
atoms, but strictly, in the wave theory, they are bounced by the atoms because of
di�raction from the crystal planes. It turns out that if we take a very long piece
of graphite, the neutrons that come out the far end are all of long wavelength! In
fact, if one plots the intensity as a function of wavelength, we get nothing except
for wavelengths longer than a certain minimum (Fig. 2-8). In other words, we
can get very slow neutrons that way. Only the slowest neutrons come through;
they are not di�racted or scattered by the crystal planes of the graphite, but
keep going right through like light through glass, and are not scattered out the
sides. There are many other demonstrations of the reality of neutron waves and
waves of other particles.

2-4 The size of an atom

We now consider another application of the uncertainty relation, Eq. (2.3).
It must not be taken too seriously; the idea is right but the analysis is not very
accurate. The idea has to do with the determination of the size of atoms, and
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Fig. 2-8. Intensity of neutrons out of graphite rod as function of
wavelength.

the fact that, classically, the electrons would radiate light and spiral in until
they settle down right on top of the nucleus. But that cannot be right quantum-
mechanically because then we would know where each electron was and how fast
it was moving.

Suppose we have a hydrogen atom, and measure the position of the electron; we
must not be able to predict exactly where the electron will be, or the momentum
spread will then turn out to be infinite. Every time we look at the electron,
it is somewhere, but it has an amplitude to be in di�erent places so there is a
probability of it being found in di�erent places. These places cannot all be at the
nucleus; we shall suppose there is a spread in position of order a. That is, the
distance of the electron from the nucleus is usually about a. We shall determine
a by minimizing the total energy of the atom.

The spread in momentum is roughly ~/a because of the uncertainty relation,
so that if we try to measure the momentum of the electron in some manner,
such as by scattering x-rays o� it and looking for the Doppler e�ect from a
moving scatterer, we would expect not to get zero every time—the electron is
not standing still—but the momenta must be of the order p ¥ ~/a. Then the
kinetic energy is roughly 1

2 mv2 = p2/2m = ~2/2ma2. (In a sense, this is a kind
of dimensional analysis to find out in what way the kinetic energy depends upon
the reduced Planck constant, upon m, and upon the size of the atom. We need
not trust our answer to within factors like 2, fi, etc. We have not even defined a
very precisely.) Now the potential energy is minus e2 over the distance from the
center, say ≠e2/a, where, as defined in Volume I, e2 is the charge of an electron
squared, divided by 4fi‘0. Now the point is that the potential energy is reduced if
a gets smaller, but the smaller a is, the higher the momentum required, because
of the uncertainty principle, and therefore the higher the kinetic energy. The
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total energy is
E = ~2/2ma2 ≠ e2/a. (2.10)

We do not know what a is, but we know that the atom is going to arrange itself
to make some kind of compromise so that the energy is as little as possible. In
order to minimize E, we di�erentiate with respect to a, set the derivative equal
to zero, and solve for a. The derivative of E is

dE/da = ≠~2/ma3 + e2/a2, (2.11)

and setting dE/da = 0 gives for a the value

a0 = ~2/me2 = 0.528 angstrom,

= 0.528 ◊ 10≠10 meter. (2.12)

This particular distance is called the Bohr radius, and we have thus learned
that atomic dimensions are of the order of angstroms, which is right. This is
pretty good—in fact, it is amazing, since until now we have had no basis for
understanding the size of atoms! Atoms are completely impossible from the
classical point of view, since the electrons would spiral into the nucleus.

Now if we put the value (2.12) for a0 into (2.10) to find the energy, it comes
out

E0 = ≠e2/2a0 = ≠me4/2~2 = ≠13.6 eV. (2.13)

What does a negative energy mean? It means that the electron has less energy
when it is in the atom than when it is free. It means it is bound. It means it takes
energy to kick the electron out; it takes energy of the order of 13.6 eV to ionize
a hydrogen atom. We have no reason to think that it is not two or three times
this—or half of this—or (1/fi) times this, because we have used such a sloppy
argument. However, we have cheated, we have used all the constants in such a
way that it happens to come out the right number! This number, 13.6 electron
volts, is called a Rydberg of energy; it is the ionization energy of hydrogen.

So we now understand why we do not fall through the floor. As we walk, our
shoes with their masses of atoms push against the floor with its mass of atoms.
In order to squash the atoms closer together, the electrons would be confined to
a smaller space and, by the uncertainty principle, their momenta would have to
be higher on the average, and that means high energy; the resistance to atomic
compression is a quantum-mechanical e�ect and not a classical e�ect. Classically,
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we would expect that if we were to draw all the electrons and protons closer
together, the energy would be reduced still further, and the best arrangement of
positive and negative charges in classical physics is all on top of each other. This
was well known in classical physics and was a puzzle because of the existence of the
atom. Of course, the early scientists invented some ways out of the trouble—but
never mind, we have the right way out, now!

Incidentally, although we have no reason to understand it at the moment, in
a situation where there are many electrons it turns out that they try to keep
away from each other. If one electron is occupying a certain space, then another
does not occupy the same space. More precisely, there are two spin cases, so that
two can sit on top of each other, one spinning one way and one the other way.
But after that we cannot put any more there. We have to put others in another
place, and that is the real reason that matter has strength. If we could put all
the electrons in the same place, it would condense even more than it does. It is
the fact that the electrons cannot all get on top of each other that makes tables
and everything else solid.

Obviously, in order to understand the properties of matter, we will have to
use quantum mechanics and not be satisfied with classical mechanics.

2-5 Energy levels

We have talked about the atom in its lowest possible energy condition, but
it turns out that the electron can do other things. It can jiggle and wiggle in a
more energetic manner, and so there are many di�erent possible motions for the
atom. According to quantum mechanics, in a stationary condition there can only
be definite energies for an atom. We make a diagram (Fig. 2-9) in which we plot
the energy vertically, and we make a horizontal line for each allowed value of the
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Fig. 2-9. Energy diagram for an atom, showing several possible
transitions.
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energy. When the electron is free, i.e., when its energy is positive, it can have
any energy; it can be moving at any speed. But bound energies are not arbitrary.
The atom must have one or another out of a set of allowed values, such as those
in Fig. 2-9.

Now let us call the allowed values of the energy E0, E1, E2, E3. If an atom
is initially in one of these “excited states,” E1, E2, etc., it does not remain in
that state forever. Sooner or later it drops to a lower state and radiates energy
in the form of light. The frequency of the light that is emitted is determined
by conservation of energy plus the quantum-mechanical understanding that the
frequency of the light is related to the energy of the light by (2.1). Therefore
the frequency of the light which is liberated in a transition from energy E3 to
energy E1 (for example) is

Ê31 = (E3 ≠ E1)/~. (2.14)

This, then, is a characteristic frequency of the atom and defines a spectral emission
line. Another possible transition would be from E3 to E0. That would have a
di�erent frequency

Ê30 = (E3 ≠ E0)/~. (2.15)

Another possibility is that if the atom were excited to the state E1 it could drop
to the ground state E0, emitting a photon of frequency

Ê10 = (E1 ≠ E0)/~. (2.16)

The reason we bring up three transitions is to point out an interesting relationship.
It is easy to see from (2.14), (2.15), and (2.16) that

Ê30 = Ê31 + Ê10. (2.17)

In general, if we find two spectral lines, we shall expect to find another line at the
sum of the frequencies (or the di�erence in the frequencies), and that all the lines
can be understood by finding a series of levels such that every line corresponds
to the di�erence in energy of some pair of levels. This remarkable coincidence in
spectral frequencies was noted before quantum mechanics was discovered, and it
is called the Ritz combination principle. This is again a mystery from the point of
view of classical mechanics. Let us not belabor the point that classical mechanics
is a failure in the atomic domain; we seem to have demonstrated that pretty well.
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We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave numbers.
Let us observe how it comes about from the point of view of amplitudes that the
atom has definite energy states. This is something we cannot understand from
what has been said so far, but we are all familiar with the fact that confined
waves have definite frequencies. For instance, if sound is confined to an organ
pipe, or anything like that, then there is more than one way that the sound can
vibrate, but for each such way there is a definite frequency. Thus an object in
which the waves are confined has certain resonance frequencies. It is therefore a
property of waves in a confined space—a subject which we will discuss in detail
with formulas later on—that they exist only at definite frequencies. And since the
general relation exists between frequencies of the amplitude and energy, we are
not surprised to find definite energies associated with electrons bound in atoms.

2-6 Philosophical implications

Let us consider briefly some philosophical implications of quantum mechanics.
As always, there are two aspects of the problem: one is the philosophical implica-
tion for physics, and the other is the extrapolation of philosophical matters to
other fields. When philosophical ideas associated with science are dragged into
another field, they are usually completely distorted. Therefore we shall confine
our remarks as much as possible to physics itself.

First of all, the most interesting aspect is the idea of the uncertainty principle;
making an observation a�ects the phenomenon. It has always been known
that making observations a�ects a phenomenon, but the point is that the e�ect
cannot be disregarded or minimized or decreased arbitrarily by rearranging the
apparatus. When we look for a certain phenomenon we cannot help but disturb
it in a certain minimum way, and the disturbance is necessary for the consistency
of the viewpoint. The observer was sometimes important in prequantum physics,
but only in a trivial sense. The problem has been raised: if a tree falls in a forest
and there is nobody there to hear it, does it make a noise? A real tree falling
in a real forest makes a sound, of course, even if nobody is there. Even if no
one is present to hear it, there are other traces left. The sound will shake some
leaves, and if we were careful enough we might find somewhere that some thorn
had rubbed against a leaf and made a tiny scratch that could not be explained
unless we assumed the leaf were vibrating. So in a certain sense we would have
to admit that there is a sound made. We might ask: was there a sensation of
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sound? No, sensations have to do, presumably, with consciousness. And whether
ants are conscious and whether there were ants in the forest, or whether the tree
was conscious, we do not know. Let us leave the problem in that form.

Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things which we
cannot measure. (Actually relativity theory also said this.) Unless a thing can be
defined by measurement, it has no place in a theory. And since an accurate value
of the momentum of a localized particle cannot be defined by measurement it
therefore has no place in the theory. The idea that this is what was the matter
with classical theory is a false position. It is a careless analysis of the situation.
Just because we cannot measure position and momentum precisely does not a
priori mean that we cannot talk about them. It only means that we need not talk
about them. The situation in the sciences is this: A concept or an idea which
cannot be measured or cannot be referred directly to experiment may or may not
be useful. It need not exist in a theory. In other words, suppose we compare the
classical theory of the world with the quantum theory of the world, and suppose
that it is true experimentally that we can measure position and momentum only
imprecisely. The question is whether the ideas of the exact position of a particle
and the exact momentum of a particle are valid or not. The classical theory
admits the ideas; the quantum theory does not. This does not in itself mean that
classical physics is wrong. When the new quantum mechanics was discovered,
the classical people—which included everybody except Heisenberg, Schrödinger,
and Born—said: “Look, your theory is not any good because you cannot answer
certain questions like: what is the exact position of a particle?, which hole does
it go through?, and some others.” Heisenberg’s answer was: “I do not need to
answer such questions because you cannot ask such a question experimentally.” It
is that we do not have to. Consider two theories (a) and (b); (a) contains an idea
that cannot be checked directly but which is used in the analysis, and the other,
(b), does not contain the idea. If they disagree in their predictions, one could not
claim that (b) is false because it cannot explain this idea that is in (a), because
that idea is one of the things that cannot be checked directly. It is always good
to know which ideas cannot be checked directly, but it is not necessary to remove
them all. It is not true that we can pursue science completely by using only those
concepts which are directly subject to experiment.

In quantum mechanics itself there is a probability amplitude, there is a
potential, and there are many constructs that we cannot measure directly. The
basis of a science is its ability to predict. To predict means to tell what will
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happen in an experiment that has never been done. How can we do that? By
assuming that we know what is there, independent of the experiment. We must
extrapolate the experiments to a region where they have not been done. We
must take our concepts and extend them to places where they have not yet
been checked. If we do not do that, we have no prediction. So it was perfectly
sensible for the classical physicists to go happily along and suppose that the
position—which obviously means something for a baseball—meant something
also for an electron. It was not stupidity. It was a sensible procedure. Today we
say that the law of relativity is supposed to be true at all energies, but someday
somebody may come along and say how stupid we were. We do not know where
we are “stupid” until we “stick our neck out,” and so the whole idea is to put our
neck out. And the only way to find out that we are wrong is to find out what
our predictions are. It is absolutely necessary to make constructs.

We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen in
physics in a given physical circumstance which is arranged as carefully as possible.
If we have an atom that is in an excited state and so is going to emit a photon,
we cannot say when it will emit the photon. It has a certain amplitude to emit
the photon at any time, and we can predict only a probability for emission; we
cannot predict the future exactly. This has given rise to all kinds of nonsense
and questions on the meaning of freedom of will, and of the idea that the world
is uncertain.

Of course we must emphasize that classical physics is also indeterminate, in a
sense. It is usually thought that this indeterminacy, that we cannot predict the
future, is an important quantum-mechanical thing, and this is said to explain the
behavior of the mind, feelings of free will, etc. But if the world were classical—if
the laws of mechanics were classical—it is not quite obvious that the mind would
not feel more or less the same. It is true classically that if we knew the position
and the velocity of every particle in the world, or in a box of gas, we could predict
exactly what would happen. And therefore the classical world is deterministic.
Suppose, however, that we have a finite accuracy and do not know exactly where
just one atom is, say to one part in a billion. Then as it goes along it hits another
atom, and because we did not know the position better than to one part in a
billion, we find an even larger error in the position after the collision. And that
is amplified, of course, in the next collision, so that if we start with only a tiny
error it rapidly magnifies to a very great uncertainty. To give an example: if
water falls over a dam, it splashes. If we stand nearby, every now and then a
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drop will land on our nose. This appears to be completely random, yet such a
behavior would be predicted by purely classical laws. The exact position of all
the drops depends upon the precise wigglings of the water before it goes over
the dam. How? The tiniest irregularities are magnified in falling, so that we get
complete randomness. Obviously, we cannot really predict the position of the
drops unless we know the motion of the water absolutely exactly.

Speaking more precisely, given an arbitrary accuracy, no matter how precise,
one can find a time long enough that we cannot make predictions valid for that
long a time. Now the point is that this length of time is not very large. It is not
that the time is millions of years if the accuracy is one part in a billion. The
time goes, in fact, only logarithmically with the error, and it turns out that in
only a very, very tiny time we lose all our information. If the accuracy is taken
to be one part in billions and billions and billions—no matter how many billions
we wish, provided we do stop somewhere—then we can find a time less than the
time it took to state the accuracy—after which we can no longer predict what is
going to happen! It is therefore not fair to say that from the apparent freedom
and indeterminacy of the human mind, we should have realized that classical
“deterministic” physics could not ever hope to understand it, and to welcome
quantum mechanics as a release from a “completely mechanistic” universe. For
already in classical mechanics there was indeterminability from a practical point
of view.
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